4.4 Article

Delta and Egfr expression are regulated by Importin-7/Moleskin in Drosophila wing development

Journal

DEVELOPMENTAL BIOLOGY
Volume 308, Issue 2, Pages 534-546

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ydbio.2007.06.011

Keywords

drosophila; moleskin; importin-7; DIM-7; wing; delta; notch; egfr; MAPK; dpERK

Ask authors/readers for more resources

Drosophila DIM-7 (encoded by the moleskin gene, msk) is the orthologue of vertebrate Importin-7. Both Importin-7 and Msk/DIM-7 function as nuclear import cofactors, and have been implicated in the control of multiple signal transduction pathways, including the direct nuclear import of the activated (phosphorylated) form of MAP kinase. We performed two genetic deficiency screens to identify deficiencies that similarly modified Msk overexpression phenotypes in both eyes and wings. We identified I I total deficiencies, one of which removes the Delta locus. In this report, we show that Delta loss-of-function alleles dominantly suppress Msk gain-of-function phenotypes in the developing wing. We find that Msk overexpression increases both Delta protein expression and Delta transcription, though Msk expression alone is not sufficient to activate Delta protein function. We also find that Msk overexpression increases Egfi- protein levels, and that msk gene function is required for proper Egfr expression in both developing wings and eyes. These results indicate a novel function for Msk in Egfr expression. We discuss the implications of these data with respect to the integration of Egfr and Delta/Notch signaling, specifically through the control of MAP kinase subeellular localization. (c) 2007 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available