4.7 Article

Electrochemical detection of a powerful estrogenic endocrine disruptor: Ethinylestradiol in water samples through bioseparation procedure

Journal

ANALYTICA CHIMICA ACTA
Volume 723, Issue -, Pages 27-32

Publisher

ELSEVIER
DOI: 10.1016/j.aca.2012.02.033

Keywords

Magnetic particles; Bioseparation; Ethinylestradiol; Electrochemistry

Funding

  1. Universidad Nacional de San Luis
  2. Agencia Nacional de Promocion Cientifica y Tecnologica
  3. Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET)

Ask authors/readers for more resources

The synthetic estrogen ethinylestradiol (EE2) is an active component of oral contraceptives (OCs), considered as an endocrine disrupting compound (EDC). It is excreted from humans and released via sewage treatment plant effluents into aquatic environments. EDCs are any environmental pollutant chemical that, once incorporated into an organism, affects the hormonal balance of various species including humans. Its presence in the environment is becoming of great importance in water quality. This paper describes the development of an accurate, sensitive and selective method for capture, preconcentration and determination of EE2 present in water samples using: magnetic particles (MPs) as bioaffinity support for the capture and preconcentration of EE2 and a glassy carbon electrode modified with multi-walled carbon nanotubes (MWCNTs/GCE) as detection system. The capture procedure was based on the principle of immunoaffinity, the EE2 being extracted from the sample using the anti-EE2 antibodies (anti-EE2 Ab) which were previously immobilized on MPs. Subsequently the analyte desorption was done employing a sulfuric acid solution and the determination of the EE2 in the pre-concentrated solution was carried out by square wave voltammetry (SWV). This method can be used to determine EE2 in the range of 0.035-70 ng L-1 with a detection limit (LOD) of 0.01 ng L-1 and R.S.D. < 4.20%. The proposed method has been successfully applied to the determination of EE2 in water samples and it has promising analytical applications for the direct determination of EE2 at trace levels. (C) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available