4.5 Article

Direct electron transfer of hemoglobin founded on electron tunneling of CTAB monolayer

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 111, Issue 33, Pages 9808-9813

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp071201t

Keywords

-

Ask authors/readers for more resources

Direct electron transfer and stable adsorption of hemoglobin (Hb) on a carbon paste (CP) electrode were achieved with the aid of a single-chain cationic surfactant, namely, cetyltrimethylammonium bromide (CTAB). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) indicated that CTAB could form a complete monolayer with a high density of positive charges on the surface of the CP electrode, which strongly adsorbed negatively charged protein molecules via electrostatic interactions. The surfactant molecules anchored the protein molecules to align in suitable orientations and acted as electron-tunneling pathways between the protein molecules and the CP electrode. The bioelectrocatalytic activity of the immobilized Hb was confirmed by RAIR and UV-vis spectroscopies, and rapid electrochemical responses to the reduction of oxygen (O-2), hydrogen peroxide (H2O2), and nitrite (NO2-) were also obtained.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available