4.6 Article

Computer modeling of mitochondrial tricarboxylic acid cycle, oxidative phosphorylation, metabolite transport, and electrophysiology

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 282, Issue 34, Pages 24525-24537

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M701024200

Keywords

-

Funding

  1. NHLBI NIH HHS [HL070011] Funding Source: Medline

Ask authors/readers for more resources

A computational model of mitochondrial metabolism and electrophysiology is introduced and applied to analysis of data from isolated cardiac mitochondria and data on phosphate metabolites in striated muscle in vivo. This model is constructed based on detailed kinetics and thermodynamically balanced reaction mechanisms and a strict accounting of rapidly equilibrating biochemical species. Since building such a model requires introducing a large number of adjustable kinetic parameters, a correspondingly large amount of independent data from isolated mitochondria respiring on different substrates and subject to a variety of protocols is used to parameterize the model and ensure that it is challenged by a wide range of data corresponding to diverse conditions. The developed model is further validated by both in vitro data on isolated cardiac mitochondria and in vivo experimental measurements on human skeletal muscle. The validated model is used to predict the roles of NAD and ADP in regulating the tricarboxylic acid cycle dehydrogenase fluxes, demonstrating that NAD is the more important regulator. Further model predictions reveal that a decrease of cytosolic pH value results in decreases in mitochondrial membrane potential and a corresponding drop in the ability of the mitochondria to synthesize ATP at the hydrolysis potential required for cellular function.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available