4.6 Article

Molecular recognition in molecular tweezeirs systems: quantum-chemical calculation of NMR chemical shifts

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 9, Issue 32, Pages 4552-4562

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b706045a

Keywords

-

Ask authors/readers for more resources

Quantum-chemical calculations for molecular tweezers systems are presented, where the focus is not only on the recognition process in the host-guest systems, but on the self aggregation of the tweezers host as well. Such intermolecular interactions influence the corresponding NMR spectra strongly by up to 6 ppm for proton chemical shifts, since ring-current effects are particularly important. The quantum-chemical results allow one to reliably assign the spectra and to gain information both on the structure and on the importance of intra- and intermolecular interactions. In addition, we study the accuracy of a variety of density functionals for describing the present host-guest systems, where we observe a considerable underestimation of ring-current effects on H-1 NMR chemical shifts at the density functional theory (DFT) level using smaller basis sets such as 6-31G**, so that larger bases like TZP are required. This stands in contrast to the behavior of the Hartree-Fock scheme, where small basis sets, such as 6-31G**, provide reliable H-1 NMR shieldings for molecular tweezers systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available