4.7 Article

Dissolved oxygen amperometric sensor based on layer-by-layer assembly using host-guest supramolecular interactions

Journal

ANALYTICA CHIMICA ACTA
Volume 664, Issue 2, Pages 144-150

Publisher

ELSEVIER
DOI: 10.1016/j.aca.2010.02.011

Keywords

Oxygen; Electrocatalysis; Layer-by-layer assembly; Host-guest interface; Supramolecular interaction; Amperometric sensor

Funding

  1. Fundacao de Amparo Pesquisa do Estado de Sao Paulo (FAPESP)
  2. Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)

Ask authors/readers for more resources

The development of a simple, efficient and sensitive sensor for dissolved oxygen is proposed using the host-guest binding of a supramolecular complex at a host surface by combining a self-assembled monolayer (SAM) of mono-(6-deoxy-6-mercapto)-beta-cyclodextrin (beta CDSH), iron (III) tetra-(N-methyl-4-pyridyl)-porphyrin (FeTMPyP) and cyclodextrin-functionalized gold nanoparticles (CDAuNP). The supramolecular modified electrode showed excellent catalytic activity for oxygen reduction. The reduction potential of oxygen was shifted about 200 mV toward less negative values with this modified electrode, presenting a peak current much higher than those observed on a bare gold electrode. Cyclic voltammetry and rotating disk electrode (RDE) experiments indicated that the oxygen reduction reaction involves probably 4-electrons with a rate constant (k(obs)) of 7 x 10(4) mol(-1) Ls(-1). A linear response range from 0.2 up to 6.5 mg L-1. with a sensitivity of 5.5 mu A L mg(-1) (or 77.5 mu A cm(-2) L mg(-1)) and a detection limit of 0.02 mg L-1 was obtained with this sensor. The repeatability of the proposed sensor, evaluated in terms of relative standard deviation was 3.0% for 10 measurements of a solution of 6.5 mg V oxygen. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available