4.7 Article

Vibrational energy levels with arbitrary potentials using the Eckart-Watson Hamiltonians and the discrete variable representation

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 127, Issue 8, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2756518

Keywords

-

Ask authors/readers for more resources

An effective and general algorithm is suggested for variational vibrational calculations of N-atomic molecules using orthogonal, rectilinear internal coordinates. The protocol has three essential parts. First, it advocates the use of the Eckart-Watson Hamiltonians of nonlinear or linear reference configuration. Second, with the help of an exact expression of curvilinear internal coordinates (e.g., valence coordinates) in terms of orthogonal, rectilinear internal coordinates (e.g., normal coordinates), any high-accuracy potential or force field expressed in curvilinear internal coordinates can be used in the calculations. Third, the matrix representation of the appropriate Eckart-Watson Hamiltonian is constructed in a discrete variable representation, in which the matrix of the potential energy operator is always diagonal, whatever complicated form the potential function assumes, and the matrix of the kinetic energy operator is a sparse matrix of special structure. Details of the suggested algorithm as well as results obtained for linear and nonlinear test cases including H2O, H-3(+), CO2, HCN/HNC, and CH4 are presented. (C) 2007 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available