4.7 Article

Differential abilities of SNAP-25 homologs to support neuronal function

Journal

JOURNAL OF NEUROSCIENCE
Volume 27, Issue 35, Pages 9380-9391

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.5092-06.2007

Keywords

SNAP-25; SNAP-23; neurite outgrowth; asynchronous release; hippocampal neurons; striatal neurons

Categories

Ask authors/readers for more resources

The SNAP receptor ( SNARE) complex, consisting of synaptosome-associated protein of 25 kDa ( SNAP-25), synaptobrevin-2, and syntaxin-1, is involved in synaptic vesicles exocytosis. In addition, SNAP-25 has been implicated in constitutive exocytosis processes required for neurite outgrowth. However, at least three isoforms of SNAP-25 have been reported from neurons: SNAP-23, which is also present in non-neuronal cells, and the two alternative splice variants SNAP-25a and SNAP-25b. Here, we studied the differential ability of these isoforms to support the functions previously broadly ascribed to SNAP-25. We studied the rescue of snap-25 null neurons in culture with different SNAP-25 homologs. We find that deletion of SNAP-25 leads to strongly reduced neuron survival, and, in the few surviving cells, impaired arborization, reduced spontaneous release, and complete arrest of evoked release. Lentiviral expression of SNAP-25a, SNAP-25b, or SNAP-23 rescued neuronal survival, arborization, amplitude, and frequency of spontaneous events. Also evoked release was rescued by all isoforms, but synchronous release required SNAP-25a/b in both glutamatergic and GABAergic neurons. SNAP-23 supported asynchronous release only, reminiscent of synaptotagmin-1 null neurons. SNAP-25b was superior to SNAP-25a in vesicle priming, resembling the shift to larger releasable vesicle pools that accompanies synaptic maturation. These data demonstrate a differential ability of SNAP-25b, SNAP-25a, and SNAP-23 to support neuronal function.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available