4.7 Article

Competing ligand exchange-solid phase extraction method for the determination of the complexation of dissolved inorganic mercury(II) in natural waters

Journal

ANALYTICA CHIMICA ACTA
Volume 598, Issue 2, Pages 318-333

Publisher

ELSEVIER
DOI: 10.1016/j.aca.2007.07.043

Keywords

mercury; complexation; speciation; ligands; freshwater

Ask authors/readers for more resources

A method employing dual competitive ligand exchange followed by solid phase extraction (CLE-SPE) for characterizing the complexation of inorganic Hg(II) in natural waters is described. This method employs parallel use of two competing ligands: diethyldithiolcarbamate (DEDC), which forms hydrophobic complexes with Hg(II), and thiosalicylic acid (TSA), which forms hydrophilic complexes with Hg(II). Inorganic mercury complexed by natural and competing ligands are separated based on hydrophobicity using C-18 solid phase extraction columns. Data modeling allows for the calculation of the concentration and conditional stability constants of natural ligands capable of complexing Hg(II) in both the operationally defined hydrophilic and hydrophobic fractions. The use of multiple ligand concentrations, and thus multiple analytical windows, to characterize different ligand classes within both of these two fractions is described. Studies of the kinetics of the ligand exchange involved, potential for changes in the stability of natural ligands during freezing and thawing, potential breakthrough during solid phase extraction, as well as the method's precision and estimation of error, are presented and discussed. Results from the application of the method to natural freshwaters demonstrated that in the limited samples collected over 99.99% of the ambient H-HgL(cond), Hg2+) on the order of 10(30), values similar to that of inorganic mercury is strongly complexed by ligands with conditional stability constants (K-HgL(cond), Hg2+) reduced sulfur ligands. At ambient conditions 85-90% of the mercury exists in hydrophobic complexes in these freshwaters, but strong Hg-binding ligands exist in both the hydrophobic and hydrophilic fractions. (c) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available