4.7 Article

Residual strength of slip zones of large landslides in the Three Gorges area, China

Journal

ENGINEERING GEOLOGY
Volume 93, Issue 3-4, Pages 82-98

Publisher

ELSEVIER
DOI: 10.1016/j.enggeo.2007.05.006

Keywords

landslide slip zones; fine-grained soils with substantial amount of coarse-grained particles; residual strength; index properties; the Three Gorges area

Ask authors/readers for more resources

Slip zones of the large landslides in the Three Gorges area are commonly composed of fine-grained soils with substantial amount of coarse-grained particles, particularly gravel-sized particles. In this study, residual strength of the soils from slip zones of these landslides were examined in relation to their index properties based on a survey of 170 landslides. It was found that laboratory-determined residual friction angle using gravel-free fraction of the disturbed soils from the slip zones was closely related to clay content, liquid limit and plasticity index. On the other hand, in-situ residual friction angle of these soils (i.e. including gravel fraction) showed very weak correlations with clay content and Atterberg limits, but was largely dependent on gravel and fines (clays+ silts) contents, increasing with gravels and decreasing with fines, and displayed strong linear correlation with the ratio of gravel to fines contents. These observations indicate that among the index properties, clay content and Atterberg limits can be used to estimate residual strength of the soils finer than 2 mm, but they are not appropriate evaluate the residual strength of the soils containing considerable amount of gravel-sized particles. For the latter, particle size distribution (particularly the ratio of gavel to fines contents) appears to be a useful index. Additionally, it was found that there was no identifiable correlation between relative abundance of individual major clay minerals and residual friction angles of both gravel-free fraction of disturbed and in-situ soils, suggesting that influence of clay minerals on residual strength of these soils can not be simply evaluated based on their abundance. (c) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available