4.7 Article

Mutation analysis of p31comet gene, a negative regulator of Mad2, in human hepatocellular carcinoma

Journal

EXPERIMENTAL AND MOLECULAR MEDICINE
Volume 39, Issue 4, Pages 508-513

Publisher

KOREAN SOC MED BIOCHEMISTRY MOLECULAR BIOLOGY
DOI: 10.1038/emm.2007.56

Keywords

carcinoma; hepatocellular; MAD2L1 protein; human; mitosis; mutation

Ask authors/readers for more resources

Failure of mitotic checkpoint machinery leads to the chromosomal missegregation and nuclear endoreduplication, thereby driving the emergence of aneuploidy and tetraploidy population. Although abnormal nuclear ploidy and the resulting impairment of mitotic checkpoint function are typical physiological event leading to human hepatocellular carcinoma, any mutational change of mitotic checkpoint regulators has not yet been discovered. Therefore, we investigated the mutation of p31(comet), a recently identified mitotic checkpoint regulator, in human hepatocellular carcinoma. Of 51 human hepatocellular carcinoma tissue and 6 cell lines tested, five samples exhibited nucleotide sequence variations dispersed on four sites within the entire coding sequence. Among these sites with sequence substitutions, three were found to be missense mutation accompanied with amino acid change but one was a silent mutation. Of these sequence substitutions, two were present in both tumor and non-tumor liver tissues, suggesting the possibility of polymorphism. The present findings indicate that p31(comet) does not have an impact on the formation of aneuploidy and tetraploidy found in human hepatocellular carcinoma.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available