4.7 Article

Gravity dual and CERN LHC study of single-sector supersymmetry breaking

Journal

PHYSICAL REVIEW D
Volume 76, Issue 5, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.76.055001

Keywords

-

Ask authors/readers for more resources

We propose a gravitational dual of single-sector models of supersymmetry breaking which contain no messenger sector and naturally explain the scale of supersymmetry breaking and the fermion mass hierarchy. In five dimensions these models can be given a simple interpretation. Inspired by flux-background solutions of type IIB supergravity, a metric background that deviates from AdS(5) in the IR breaks supersymmetry, while the fermion mass hierarchy results from the wave function overlap of bulk fermions with a UV-confined Higgs field. The first and second generation squarks and sleptons, which are localized near the IR brane, directly feel the supersymmetry breaking and obtain masses of order 10 TeV. These are interpreted as composite states of the dual 4D theory. The gauginos and third generation squarks and sleptons are elementary states that obtain soft masses of order 1 TeV at the loop level via direct gauge mediation. This particle spectrum leads to distinctive signatures at the LHC, similar to the usual gauge mediation with a neutralino NLSP that decays promptly to a gravitino LSP, but with lower event rates. Nevertheless we show that with 1-10 fb(-1) of LHC data single-sector models can easily be detected above background and distinguished from conventional gravity and gauge mediation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available