4.8 Article

Engineering the rRNA decoding site of eukaryotic cytosolic ribosomes in bacteria

Journal

NUCLEIC ACIDS RESEARCH
Volume 35, Issue 18, Pages 6086-6093

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/nar/gkm658

Keywords

-

Ask authors/readers for more resources

Structural and genetic studies on prokaryotic ribosomes have provided important insights into fundamental aspects of protein synthesis and translational control and its interaction with ribosomal drugs. Comparable mechanistic studies in eukaryotes are mainly hampered by the absence of both high-resolution crystal structures and efficient genetic models. To study the interaction of aminoglycoside antibiotics with selected eukaryotic ribosomes, we replaced the bacterial drug binding site in 16S rRNA with its eukaryotic counterpart, resulting in bacterial hybrid ribosomes with a fully functional eukaryotic rRNA decoding site. Cell-free translation assays demonstrated that hybrid ribosomes carrying the rRNA decoding site of higher eukaryotes show pronounced resistance to aminoglycoside antibiotics, equivalent to that of rabbit reticulocyte ribosomes, while the decoding sites of parasitic protozoa show distinctive drug susceptibility. Our findings suggest that phylogenetically variable components of the ribosome, other than the rRNA-binding site, do not affect aminoglycoside susceptibility of the protein-synthesis machinery. The activities of the hybrid ribosomes indicate that helix 44 of the rRNA decoding site behaves as an autonomous domain, which can be exchanged between ribosomes of different phylogenetic domains for study of function.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available