4.3 Article

B-scorpion toxin modifies gating transitions in all four voltage sensors of the sodium channel

Journal

JOURNAL OF GENERAL PHYSIOLOGY
Volume 130, Issue 3, Pages 257-268

Publisher

ROCKEFELLER UNIV PRESS
DOI: 10.1085/jgp.200609719

Keywords

-

Categories

Funding

  1. NIGMS NIH HHS [R37 GM030376, GM30376, R01 GM030376] Funding Source: Medline

Ask authors/readers for more resources

Several naturally occurring polypeptide neurotoxins target specific sites on the voltage-gated sodium channels. Of these, the gating modifier toxins alter the behavior of the sodium channels by stabilizing transient intermediate states in the channel gating pathway. Here we have used an integrated approach that combines electrophysiological and spectroscopic measurements to determine the structural rearrangements modified by the beta-scorpion toxin Ts1. Our data indicate that toxin binding to the channel is restricted to a single binding site on domain II voltage sensor. Analysis of Cole-Moore shifts suggests that the number of closed states in the activation sequence prior to channel opening is reduced in the presence of toxin. Measurements of charge-voltage relationships show that a fraction of the gating charge is immobilized in Ts1-modified channels. Interestingly, the charge-voltage relationship also shows an additional component at hyperpolarized potentials. Site-specific fluorescence measurements indicate that in presence of the toxin the voltage sensor of domain II remains trapped in the activated state. Furthermore, the binding of the toxin potentiates the activation of the other three voltage sensors of the sodium channel to more hyperpolarized potentials. These findings reveal how the binding of beta-scorpion toxin modifies channel function and provides insight into early gating transitions of sodium channels.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available