4.7 Article

Functionalized self-assembled monolayers for measuring single molecule lectin carbohydrate interactions

Journal

ANALYTICA CHIMICA ACTA
Volume 649, Issue 1, Pages 1-7

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.aca.2009.07.027

Keywords

Carbohydrate array; Lectin interaction; Atomic force microscopy; Self-assembled monolayers

Funding

  1. Qimonda Pilot Project

Ask authors/readers for more resources

The specific interactions between sugar-binding proteins (lectins) and their complementary carbohydrates mediate several complex biological functions. There is a great deal of interest in uncovering the molecular basis of these interactions. In this study, we demonstrate the use of an efficient one-step amination reaction strategy to fabricate carbohydrate arrays based on mixed self-assembled monolayers. These allow specific lectin carbohydrate interactions to be interrogated at the single molecule level via AFM. The force required to directly rupture the multivalent bonds between Concanavalin A (Con A) and mannose were subsequently determined by chemical force microscopy. The mixed self-assembled monolayer provides a versatile platform with active groups to attach a 1-amino-1-deoxy sugar or a protein (Con A) while minimizing non-specific adhesion enabling quick and reliable detection of rupture forces. By altering the pH of the environment, the aggregation state of Con A was regulated, resulting in different dominant rupture forces, corresponding to di-, tri- and multiple unbinding events. We estimate the value of the rupture force for a single Con A-mannose bond to be 95 +/- 10 pN. The rupture force is consistent even when the positions of the binding molecules are switched. We show that this synthesis strategy in conjunction with a mixed SAM allows determination of single molecules bond with high specificity, and may be used to investigate lectin carbohydrate interactions in the form of carbohydrate arrays as well as lectin arrays. (C) 2009 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available