4.5 Article

Axon viability and mitochondrial function are dependent on local protein synthesis in sympathetic neurons

Journal

CELLULAR AND MOLECULAR NEUROBIOLOGY
Volume 27, Issue 6, Pages 701-716

Publisher

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s10571-007-9148-y

Keywords

Superior cervical ganglia; Axon; Local protein synthesis; Mitochondrial membrane potential; ATP levels

Ask authors/readers for more resources

(1) Axons contain numerous mRNAs and a local protein synthetic system that can be regulated independently of the cell body. (2) In this study, cultured primary sympathetic neurons were employed, to assess the effect of local protein synthesis blockade on axon viability and mitochondrial function. (3) Inhibition of local protein synthesis reduced newly synthesized axonal proteins by 65% and resulted in axon retraction after 6 h. Acute inhibition of local protein synthesis also resulted in a significant decrease in the membrane potential of axonal mitochondria. Likewise, blockade of local protein transport into the mitochondria by transfection of the axons with Hsp90 C-terminal domain decreased the mitochondrial membrane potential by 65%. Moreover, inhibition of the local protein synthetic system also reduced the ability of mitochondria to restore axonal levels of ATP after KCl-induced depolarization. (4) Taken together, these results indicate that the local protein synthetic system plays an important role in mitochondrial function and the maintenance of the axon.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available