4.6 Article

Determination of cell types and numbers during cardiac development in the neonatal and adult rat and mouse

Journal

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.00514.2007

Keywords

cardiac fibroblast; myocyte; cardiac remodeling; flow cytometry

Funding

  1. NCRR NIH HHS [P20-RR-16461, P20-RR-1643-401] Funding Source: Medline

Ask authors/readers for more resources

Cardiac fibroblasts, myocytes, endothelial cells, and vascular smooth muscle cells are the major cellular constituents of the heart. The aim of this study was to observe alterations in myocardial cell populations during early neonatal development in the adult animal and to observe any variations of the cardiac cell populations in different species, specifically, the rat and mouse. Whole hearts were isolated from either mice or rats during the neonatal and adult stages of development, and single cell suspensions were prepared via sequential collagenase digestion. Heterogeneous cell populations were immuno-labeled for specific cell types and analyzed using fluorescence-activated cell sorting (FACS). In addition, the left ventricle, right ventricle, and septa were isolated, fixed, and sectioned for morphometric analyses. These same cardiac regions were also analyzed using FACS. We observed that the adult murine myocardium is composed of similar to 56% myocytes, 27% fibroblasts, 7% endothelial cells, and 10% vascular smooth muscle cells. Moreover, our morphometric and FACS data demonstrated similar percentages in the three regions examined. During murine neonatal cardiac development, we observed a marked increase in numbers of cardiac fibroblasts and a resultant decrease in percentages of myocytes in late neonatal development (day 15). Finally, FACS analyses of the rat heart during development displayed similar results in relation to increases in cardiac fibroblasts during development; however, cell populations in the rat differed markedly from those observed in the mouse. Taken together, these data enabled us to establish a homeostatic model for the myocardium that can be compared with genetic and cardiac disease models.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available