4.4 Article

Long range surface plasmons for observation of biomolecular binding events at metallic surfaces

Journal

PLASMONICS
Volume 2, Issue 3, Pages 97-106

Publisher

SPRINGER
DOI: 10.1007/s11468-007-9037-8

Keywords

surface plasmon resonance; long range surface plasmon; biosensor; fluorescence spectroscopy; optical sensor

Ask authors/readers for more resources

A long range surface plasmon (LRSP) is an electromagnetic wave propagating along a thin metal film with an order of magnitude lower damping than conventional surface plasmon (SP) waves. Thus, the excitation of LRSP is associated with a narrower resonance and it provides larger enhancement of intensity of the electromagnetic field. In surface plasmon resonance (SPR) biosensors, these features allow a more precise observation of the binding of biomolecules in the proximity to the metal surface by using the (label-free) measurement of refractive index (RI) variations and by SP-enhanced fluorescence spectroscopy. In this contribution, we investigate LRSPs excited on a layer structure consisting of a fluoropolymer buffer layer, a thin gold film, and an aqueous sample. By implementing such structure in an SPR sensor, we achieved a 2.4- and 4.4-fold improvement of the resolution in the label-free and fluorescence-based detection, respectively, of the binding of biomolecules in the close proximity to the surface. Moreover, we demonstrate that the sensor resolution can be improved by a factor of 14 and 12 for the label-free and fluorescence-based detection, respectively, if the biomolecular binding events occur within the whole evanescent field of LRSP.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available