4.7 Article

Machining of UD-GFRP composites chip formation mechanism

Journal

COMPOSITES SCIENCE AND TECHNOLOGY
Volume 67, Issue 11-12, Pages 2271-2281

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compscitech.2007.01.025

Keywords

composites; material damage; chip formation; micromechanics; machining

Ask authors/readers for more resources

The chip formation mechanism in orthogonal machining of unidirectional glass fiber reinforced polymer (UD-GFRP) composites is simulated using quasi-static analysis. Dynamic explicit finite element method with mass scaling is used for analysis to speed up the solution. A two-dimensional, two-phase micromechanical model with elastic fiber, clasto-plastic matrix and a cohesive zone is used to simulate the debonding interface between the fiber and the matrix. The elements of the fiber are failed once the maximum principal stress reaches the tensile strength and the matrix elastic modulus is degraded once the ultimate strength is reached. The effect of fiber orientation, tool parameters and operating conditions on fiber and matrix failure and chip size is also investigated. The degradation of the matrix adjacent to the fiber occurs first, followed by failure of the fiber at its rear side. The extent of sub-surface damage due to matrix cracking and interfacial debonding is also determined. (c) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available