4.5 Article

Atomistic study of lattice trapping behavior for brittle fracture in bcc-iron

Journal

COMPUTATIONAL MATERIALS SCIENCE
Volume 40, Issue 3, Pages 376-381

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.commatsci.2007.01.019

Keywords

atomistic simulations; lattice trapping; anisotropy; brittle fracture; slip systems; bcc-iron

Ask authors/readers for more resources

The lattice trapping behavior for brittle fracture in bcc-iron has been studied by atomistic simulations. A pronounced anisotropy for brittle cleavage fracture of a mode I crack is observed in the discrete atomistic scale, and the preferred direction for cleavage is along the < 110 > direction on both {100} and {011} planes. The analysis of the atomic structure indicates that, due to the shear effect at the crack tip, the stacking faults or partial dislocations are formed before crack cleavage occurs. For the crack with a < 110 > crack front, shear occurs easily along the slip direction of bcc crystals, whereas for the crack with a < 100 > front, shear can only occur along the non-slip direction, and a strong lattice trapping is exhibited. We conclude that the anisotropy for cleavage fracture and the lattice trapping behavior are closely related with the slip systems of bcc crystals. (C) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available