3.9 Article

Choline induces transcriptional repression and proteasomal degradation of the malarial phosphoethanolamine methyltransferase

Journal

EUKARYOTIC CELL
Volume 6, Issue 9, Pages 1618-1624

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/EC.00229-07

Keywords

-

Funding

  1. NCRR NIH HHS [M01 RR006192] Funding Source: Medline
  2. NIAID NIH HHS [R01 AI051507, R21 AI058962] Funding Source: Medline

Ask authors/readers for more resources

During its intraerythrocytic life cycle, the malaria parasite Plasmodium falciparum undergoes dramatic metabolic and morphological changes and multiplies to produce up to 36 new daughter parasites. This rapid multiplication of the parasite requires an active synthesis of new membranes. The major component of these membranes, phosphatidylcholine, is synthesized via two metabolic routes, the CDP-choline pathway, which uses host choline as a precursor, and the plant-like serine decarboxylase-phosphoethanolamine methyltransferase (SDPM) pathway, which uses host serine as a precursor. Here we provide evidence indicating that the activity of the SDPM pathway is regulated by the CDP-choline precursor, choline. We show that the phosphoethanolamine methyltransferase, Pfpmt, a critical enzyme in the SDPM pathway, is down-regulated at the transcriptional level as well as targeted for degradation by the proteasome in the presence of choline. Transcript analysis revealed that PfPMT transcription is repressed by choline in a dose-dependent manner. Immunoblotting, pulse-chase experiments, and immunoprecipitation studies demonstrated that Pfpmt degradation occurs not only in wild-type but also in transgenic parasites constitutively expressing Pfpmt. The proteasome inhibitor bortezomib inhibited choline-mediated Pfpmt degradation. These data provide the first evidence for metabolite-mediated transcriptional and proteasomal regulation in Plasmodium and will set the stage for the use of this system for conditional gene and protein expression in this organism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available