4.8 Article

Patterned biofunctional designs of thermoresponsive surfaces for spatiotemporally controlled cell adhesion, growth, and thermally induced detachment

Journal

BIOMATERIALS
Volume 28, Issue 25, Pages 3632-3643

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2007.04.019

Keywords

patterned biofunctional thermoresponsive surfaces; RGDS; insulin (INS); spatiotemporal control; designed monolayer tissues

Ask authors/readers for more resources

In the present study, we report advanced patterned biofunctionalization of thermoresponsive surfaces for achievement of spatiotemporally controlled cell adhesion, growth, and thermally induced detachment. These patterned biofunctional thermoresponsive surfaces were prepared using dual surface modification techniques: electron beam-induced surface patterning of carboxyl-functional thermoresponsive polymers with appropriate metal masks and following site-selective biofunctionalization with biomolecules, the cell adhesive peptide (RGDS) and/or the cell growth factor (insulin; INS). Patterned co-immobilization of RGDS-INS onto thermoresponsive surfaces dominated site-selective cell adhesion and growth along with patterned biofunctional domains in the serum-free culture. Spatiotemporal detachment of sparsely adherent and confluent cells from these patterned biofunctional thermoresponsive surfaces were both achieved only by reducing temperature. Furthermore, RGDS-INS-patterned thermoresponsive surfaces also successfully demonstrated the selective fabrication and recovery of either contiguous monolayer or mesh-like designed monolayer tissue constructs on the identical surfaces. Thus, patterned biofunctional designs would be utilized for the creation and harvest of biomimetic-designed vascular networks having sufficient biofunctional activities in facilitated cell sheet engineering and regenerative medicine. (c) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available