4.7 Article

Sex differences in lipolysis-regulating mechanisms in overweight subjects: Effect of exercise intensity

Journal

OBESITY
Volume 15, Issue 9, Pages 2245-2255

Publisher

WILEY
DOI: 10.1038/oby.2007.267

Keywords

microdialysis; adipose tissue; atrial natriuretic peptide; catecholamines; alpha(2)-adrenergic receptor

Ask authors/readers for more resources

Objective: To explore sex differences in the regulation of lipolysis during exercise, the lipid-mobilizing mechanisms in the subcutaneous adipose tissue (SCAT) of overweight men and women were studied using microdialysis. Research Methods and Procedures: Subjects matched for age, BMI, and physical fitness performed two 30-minute exercise bouts in a randomized fashion: the first test at 30% and 50% of their individual maximal oxygen uptake (Vo(2max)) and the second test at 30% and 70% of their Vo(2max). Results: In both groups, an exercise-dependent increment in extracellular glycerol concentration (EGC) was observed. Whatever the intensity, phentolamine [alpha-adrenergic receptor (AR) antagonist] added to a dialysis probe potentiated exercise-induced lipolysis only in men. In a probe containing phentolamine plus propranolol (beta-AR antagonist), no changes in EGC occurred when compared with the control probe when exercise was performed at 30% and 50% Vo(2rnax). A significant reduction of EGC (when compared with the control probe) was observed in women at 70% Vo(2max). At each exercise power, the plasma non-esterified fatty acid and glycerol concentrations were higher in women. Exercise-induced increase in plasma catecholamine levels was lower in women compared with men. Plasma insulin decreased and atrial natriuretic peptide increased similarly in both groups. Discussion: Overweight women mobilize more lipids (assessed by glycerol) than men during exercise. alpha(2)-Antilipolytic effect was functional in SCAT of men only. The major finding is that during low-to-moderate exercise periods (30% and 50% Vo(2max)), lipid mobilization in SCAT relies less on catecholamine-dependent stimulation of beta-ARs than on an increase in plasma atrial natriuretic peptide concentrations and the decrease in plasma insulin.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available