4.6 Article

Seismic modeling of gas chimneys

Journal

GEOPHYSICS
Volume 72, Issue 5, Pages SM251-SM259

Publisher

SOC EXPLORATION GEOPHYSICISTS
DOI: 10.1190/1.2749570

Keywords

-

Ask authors/readers for more resources

We propose a simple acoustic model explaining the main features of gas chimneys. The main elements of the model consist of gas diffusing from a connected fracture network and into the surrounding shale creating an inhomogeneous gas saturation. The gas saturation results in an inhomogeneous fluctuating compressional velocity field that distorts seismic waves. We model the fracture network by a random-walk process constrained by maximum fracture length and angle of the fracture with respect to the vertical. The gas saturation is computed from a simple analytical solution of the diffusion equation, and pressure-wave velocities are locally obtained assuming that mixing of shale and gas occurs on a scale much smaller than seismic wavelengths. Synthetic seismic sections are then computed using the resulting inhomogeneous velocity model and shown to give rise to similar deterioration in data quality as that found in data from real gas chimneys. Also, synthetic common-midpoint (CMP) gathers show the same distorted and attenuated traveltime curves as those obtained from a real data set. The model shows clearly that the features of gas chimneys change with geological time (a model parameter in our approach), the deterioration of seismic waves being smallest just after the creation of the gas chimney. It seems likely that at least some of the features of gas chimneys can be explained by a simple elastic model in combination with gas diffusion from a fracture network.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available