4.6 Article

Carrier multiplication in semiconductor nanocrystals via intraband optical transitions involving virtual biexciton states

Journal

PHYSICAL REVIEW B
Volume 76, Issue 12, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.76.125321

Keywords

-

Ask authors/readers for more resources

We propose and analyze a physical mechanism for photogeneration of multiexcitons by single photons (carrier multiplication) in semiconductor nanocrystals, which involves intraband optical transitions within the manifold of biexciton states. In this mechanism, a virtual biexciton is generated from nanocrystal vacuum by the Coulomb interaction between two valence-band electrons, which results in their transfer to the conduction band. The virtual biexciton is then converted into a real, energy-conserving biexciton by photon absorption on an intraband optical transition. The proposed mechanism is inactive in bulk semiconductors as momentum conservation suppresses intraband transitions. However, it becomes highly efficient in the case of zero-dimensional nanocrystals, where quantum confinement results in relaxation of momentum conservation, which is accompanied by the development of strong intraband absorption. Our calculations show that the efficiency of the carrier multiplication channel mediated by intraband optical transitions can be comparable to or even greater than that for impact-ionization-like processes mediated by interband transitions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available