4.6 Article

Surfactant-free nanoparticle DNA complexes with ultrahigh stability against salt for environmental and biological sensing

Journal

ANALYST
Volume 139, Issue 22, Pages 5936-5944

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4an01271b

Keywords

-

Funding

  1. Basic Science Research Program [NRF-2012R1A1A1010100]
  2. R&D Program for Society of the National Research Foundation (NRF) - Ministry of Science, ICT & Future Planning, Korea [NRF-2013M3C8A3078514]

Ask authors/readers for more resources

We report the development of surfactant free-gold nanoparticle (AuNP)-DNA complexes that remained stable in solutions with extremely high ionic strength, using seawater as a model solution. Although the stability of AuNPs can be increased to a certain degree by functionalizing negatively charged DNA strands on their surfaces, they still have limited stability in highly concentrated salt solutions. However, we found that AuNPs functionalized with poly-T bases have exceptional stability in high ionic strength solutions. For example, AuNPs functionalized with a 5T spacer remained highly stable in seawater, with no color change and no red-shift in absorbance spectra for up to 9 days. Using this surprising property of poly-T spacers, we prepared highly stable AuNP-DNA complexes containing random sequences by introducing 5T spacers on the random sequenced DNA strand. The random sequenced AuNP-DNA complexes remained stable in seawater, several molar concentrations of monovalent metal ion solutions (6.1 M Na+ or 4.8 M K+), and millimolar concentrations of diverse divalent metal ions. In addition, the highly stable AuNP-DNA complex maintained biological activity in seawater, which was demonstrated by complementary reaction and aptamer based biosensing. These results provide important insight into NP use for various applications under harsh biological and environmental conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available