4.8 Article

LITTLE NUCLEI genes affecting nuclear morphology in Arabidopsis thaliana

Journal

PLANT CELL
Volume 19, Issue 9, Pages 2793-2803

Publisher

AMER SOC PLANT BIOLOGISTS
DOI: 10.1105/tpc.107.053231

Keywords

-

Funding

  1. Direct For Biological Sciences
  2. Div Of Molecular and Cellular Bioscience [0956820] Funding Source: National Science Foundation

Ask authors/readers for more resources

Efforts to understand nuclear organization in plant cells have received little assistance from the better-studied animal nuclei, because plant proteomes do not contain recognizable counterparts to the key animal proteins involved in nuclear organization, such as lamin nuclear intermediate filament proteins. Previous studies identified a plant-specific insoluble nuclear protein in carrot (Daucus carota), called Nuclear Matrix Constituent Protein1 (NMCP1), which contains extensive coiled-coil domains and localizes to the nuclear periphery. Here, we describe a genetic characterization of two NMCP1-related nuclear proteins in Arabidopsis thaliana, LITTLE NUCLEI1 (LINC1) and LINC2. Disruption of either gene caused a reduction in nuclear size and altered nuclear morphology. Moreover, combining linc1 and linc2 mutations had an additive effect on nuclear size and morphology but a synergistic effect on chromocenter number (reduction) and whole-plant morphology (dwarfing). The reduction in nuclear size in the linc1 linc2 double mutant was not accompanied by a corresponding change in endopolyploidy. Rather, the density of DNA packaging at all endopolyploid levels in the linc1 linc2 mutants was increased significantly. Our results indicate that the LINC coiled-coil proteins are important determinants of plant nuclear structure.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available