4.6 Article

Leukocytes induce epithelial to mesenchymal transition after unilateral ureteral obstruction in neonatal mice

Journal

AMERICAN JOURNAL OF PATHOLOGY
Volume 171, Issue 3, Pages 861-871

Publisher

AMER SOC INVESTIGATIVE PATHOLOGY, INC
DOI: 10.2353/ajpath.2007.061199

Keywords

-

Categories

Ask authors/readers for more resources

Urinary tract obstruction during renal development leads to tubular apoptosis, tubular atrophy, and interstitial fibrosis. Epithelial to mesenchymal transition (EMT) has been proposed as a key mechanism of myofibroblast accumulation in renal fibrosis. We studied the interplay of leukocyte infiltration, tubular apoptosis, and EMT in renal fibrosis induced by unilateral ureteral obstruction (UUO) in neonatal mice. We show that leukocytes mediate tubular apoptosis and EMT in the developing kidney with obstructive nephropathy. Blocking leukocyte recruitment by using the chemokine receptor-1 antagonist BX471 protected against tubular apoptosis and interstitial fibrosis, as evidenced by reduced monocyte influx, a decrease in EMT, and attenuated collagen deposition. EMT was rapidly induced within 24 hours after UUO along with up-regulation of the transcription factors Snail1 and Snail2/Slug, preceding the induction of a-smooth muscle actin and vimentin. In the presence of BX471, the expression of chemokines, as well as of Snail1 and Snail2/Slug, in the obstructed kidney was completely attenuated. This was associated with reduced macrophage and T-cell infiltration, tubular apoptosis, and interstitial fibrosis in the developing kidney. Our findings provide evidence that leukocytes induce EMT and renal fibrosis after UUO and suggest that chemokine receptor-1 antagonism may prove beneficial in obstructive nephropathy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available