4.5 Article

Using EPECs to model bilevel games in restructured electricity markets with locational prices

Journal

OPERATIONS RESEARCH
Volume 55, Issue 5, Pages 809-827

Publisher

INFORMS
DOI: 10.1287/opre.1070.0431

Keywords

-

Ask authors/readers for more resources

We study a bilevel noncooperative game-theoretic model of restructured electricity markets, with locational marginal prices. Each player in this game faces a bilevel optimization problem that we model as a mathematical program with equilibrium constraints (MPEC). The corresponding game is an example of an equilibrium program with equilibrium constraints (EPEC). We establish sufficient conditions for the existence of pure-strategy Nash equilibria for this class of bilevel games and give some applications. We show by examples the effect of network transmission limits, i.e., congestion, on the existence of equilibria. Then we study, for more general equilibrium programs with equilibrium constraints, the weaker pure-strategy concepts of local Nash and Nash stationary equilibria. We pose the latter as solutions of complementarity problems (CPs) and show their equivalence with the former in some cases. Finally, we present numerical examples of methods that attempt to find local Nash equilibria or Nash stationary points of randomly generated electricity market games.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available