4.2 Article

Alpha-secretase as a therapeutic target

Journal

CURRENT ALZHEIMER RESEARCH
Volume 4, Issue 4, Pages 412-417

Publisher

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/156720507781788837

Keywords

alpha-secretase; ADAM 10; retinoic acid; cholesterol; G protein-coupled receptor

Ask authors/readers for more resources

In the non-amyloidogenic pathway the a-secretase cleaves the amyloid precursor protein (APP) within the sequence of A beta-peptides and precludes their formation. In addition, a-secretase cleavage releases an N-terminal extracellular domain with neurotrophic and neuroprotective properties. The disintegrin metalloproteinase ADAM 10 has been shown to act as a-secretase in vivo, to prevent amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model. An increase in a-secretase activity therefore is an attractive strategy for treatment of AD and may be achieved by modulating selective signalling pathways. Functional characterization of the human ADAM10 promoter showed that it contains several binding elements for transcription factors which are regulated by extracellular ligands. Retinoic acid (RA) was identified as an inducer of human ADAM10 promoter activity. In human neuroblastoma cell lines RA treatment upregulated the expression of both the a-secretase ADAM10 and its substrates APP and the related APP-like-protein 2 (APLP2), and led to an enhanced secretion of their extracellular domains. Furthermore, G protein-coupled receptors (GPCRs) localized in brain areas affected by AD were investigated. Activation of the PAC 1 receptor by the neuropeptide PACAP was identified as an approach for upregulation of the a-secretase pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available