4.6 Article

Simple pyridyl-salicylimine-based fluorescence turn-on sensors for distinct detections of Zn2+, Al3+ and OH- ions in mixed aqueous media

Journal

ANALYST
Volume 138, Issue 10, Pages 2931-2942

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3an36840h

Keywords

-

Funding

  1. National Science Council of Taiwan (ROC) [NSC99-2113-M-009-006-MY2]

Ask authors/readers for more resources

Simple pyridyl-salicylimine derivatives (F1, F2 and F3) are reported for the first time as fluorescence turn-on sensors for distinct detections of Zn2+, Al3+ and OH- ions in mixed-aqueous media CH3CN/H2O with volume ratios of 6/4 and 3/7 (at pH = 7 and 25 degrees C) via internal charge transfer (ICT), chelation enhanced fluorescence (CHEF), and deprotonation mechanisms. F1 and F2 show diverse turn-on sensing applications to Zn2+, Al3+ and OH- ions, but F3 exhibited the fluorescence turn-on sensing to Al3+ and OH- ions in CH3CN/H2O (6/4; vol/vol). F1+Zn2+ and F2+Zn2+ complexes revealed the reversibilities and ratiometric displacements of Zn2+ with ethylene diamine tetra acetic acid (EDTA) and Al3+ ions, respectively, in CH3CN/H2O (6/4; vol/vol). On the other hand, F1, F2 and F3 in CH3CN/H2O (3/7; vol/vol) showed sensitivities only to Al3+ ions but negligible selectivities to OH- ions. Stoichiometry of all sensor complexes were calculated as 1 : 1 by job's plots based on UV/Vis and PL titrations. The complex formation and binding sites of all sensor materials were well characterized by H-1, C-13 NMR, and mass (FAB) spectral analysis. Detection limits were calculated from standard deviations and linear fitting calculations. The association constant (log K-a) values of sensor complexes were evaluated from the fluorescence binding isotherms. The fluorescence decay constant (tau) values were estimated from time resolved fluorescence studies. Time, temperature, pH and solvent concentration effects towards sensor responses were fully investigated in this report.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available