4.8 Article

Carbon nanotube-modified carbon fiber microelectrodes for in vivo voltammetric measurement of ascorbic acid in rat brain

Journal

ANALYTICAL CHEMISTRY
Volume 79, Issue 17, Pages 6559-6565

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac0705871

Keywords

-

Ask authors/readers for more resources

This study demonstrates a new electrochemical method for in vivo measurements of ascorbic acid (AA) in rat brain with multiwalled carbon nanotube (MWNT)-modified carbon fiber microelectrodes (CFMEs) based on the electrochemical property of MWNTs for facilitating AA oxidation. Cyclic voltammetry results indicate that the prepared MWNT-modified CFMEs possess a marked electrocatalytic activity toward AA oxidation and can be used for its selective measurement in the presence of other kinds of electroactive species coexisting in rat brain, such as 3,4-dihydroxyphenylacetic acid, uric acid, and 5-hydroxytzyptamine. The selectivity of the MWNT-modified CFMEs toward AA measurement is further studied in vivo by exogenously infusing ascorbate oxidase into the brain, and the results confirm that the prepared electrodes are selective and can thus be used for reliable in vivo measurements of AA in rat brain, combined with their good stability during in vivo measurements. The basal level of striatum AA is determined to be 0.20 +/- 0.05 mM (n = 3). The application of the voltammetric method with the MWNT-modified CFMEs is preliminarily demonstrated for in vivo observation of homeostatic regulation of striatum AA with exogenous infusion of AA into the brain.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available