4.6 Article

Detection of cancer cells using a peptide nanotube-folic acid modified graphene electrode

Journal

ANALYST
Volume 138, Issue 4, Pages 1026-1031

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2an36121c

Keywords

-

Funding

  1. Colombian Administrative Department of Science, Technology and Innovation, COLCIENCIAS [110245921468]
  2. Danish Agency for Science Technology and Innovation [FSS 09066053]

Ask authors/readers for more resources

This article describes the preparation of a graphene electrode modified with a new conjugate of peptide nanotubes and folic acid for the selective detection of human cervical cancer cells over-expressing folate receptors. The functionalization of peptide nanotubes with folic acid was confirmed by fluorescence microscopy and atomic force microscopy. The peptide nanotube-folic acid modified graphene electrode was characterized by scanning electron microscopy and cyclic voltammetry. The modification of the graphene electrode with peptide nanotube-folic acid led to an increase in the current signal. The human cervical cancer cells were bound to the modified electrode through the folic acid-folate receptor interaction. Cyclic voltammograms in the presence of [Fe(CN)(6)](3-/4-) as a redox species demonstrated that the binding of the folate receptor from human cervical cancer cells to the peptide nanotube-folic acid modified electrode lowered the electron transfer resulting in a decrease in the measured current. A detection limit of 250 human cervical cancer cells per mL was obtained. Control experiments confirmed that the peptide nanotube-folic acid electrode specifically recognized folate receptors. The modified electrode described here opens up new possibilities for future applications in early stage diagnoses of diseases where cells over-express folate receptors, such as in cancer or leishmaniasis disease.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available