4.6 Article

A strategy to decorate porous polymer monoliths with graphene oxide and graphene nanosheets

Journal

ANALYST
Volume 138, Issue 5, Pages 1549-1557

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2an36608h

Keywords

-

Funding

  1. National Natural Science Foundation of China [21205047]
  2. Jilin Provincial Science & Technology Department [201105102]
  3. State Key Laboratory of Supramolecular Structure and Materials, Jilin University [sklssm201218]

Ask authors/readers for more resources

Graphene oxide (GO)/graphene (GN) nanosheets were coated onto the poly(glycidyl methacrylate-ethylene dimethacrylate) monolithic bed synthesized inside the capillary in order to prepare a promising polymer monolith microextraction (PMME) material (GO/GN@poly(GMA-EDMA)). Various techniques, including Fourier transform infrared spectroscopy, atomic force microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy, were employed to characterize the synthesized GO/GN@poly(GMA-EDMA) monoliths, confirming that GO/GN was effectively functionalized on the poly(GMA-EDMA) monolithic materials. Furthermore, a new method was developed for the analysis of sarcosine (identified as a potential prostate cancer biomarker) using PMME coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Under the preoptimized conditions, the monolithic column afforded satisfactory enhancement factor (32-fold) and low limits of detection (1.0 ng mL(-1)) were obtained. In comparison to several other commercialized solid phase extraction adsorbents, GN@poly(GMA-EDMA) monoliths exhibited excellent performance with recoveries of sarcosine approaching 93% with relative standard deviations less than 11.5%.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available