4.6 Article

DNA assembly and enzymatic cutting in solutions: a gold nanoparticle based SERS detection strategy

Journal

ANALYST
Volume 138, Issue 17, Pages 4941-4949

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3an00683b

Keywords

-

Funding

  1. National Science Foundation CHE [0848701]
  2. CMMI [1100736]
  3. Direct For Mathematical & Physical Scien
  4. Division Of Chemistry [0848701] Funding Source: National Science Foundation
  5. Directorate For Engineering
  6. Div Of Civil, Mechanical, & Manufact Inn [1100736] Funding Source: National Science Foundation

Ask authors/readers for more resources

The ability to monitor biomolecular recognition such as DNA hybridization and enzymatic reactivity in solutions with high sensitivity is important for developing effective bioassay strategies. Surface enhanced Raman scattering (SERS) based on use of solid substrates to produce the SERS effect for the detection often requires substrate preparation which is ineffective for rapid monitoring. This report describes a new strategy exploiting a gold nanoparticle (AuNP) based interparticle hot-spot for SERS monitoring of DNA mediated assembly and enzyme induced cleavage of the assembly in solution phase. The DNAs consist of two different complementary DNA strands with a thiol modification for attachment to AuNPs of selected sizes. In a solution containing AuNPs conjugated with one of the single-stranded (ss) DNA and other AuNPs labeled with a Raman reporter molecule, 4-mercaptobenzoic acid (MBA), the introduction of the complementary DNA strand leads to a linkage of the two types of AuNPs, producing double-stranded (ds) DNA-AuNP assembly (ds-DNA-AuNPs) with an interparticle hot-spot for SERS detection of the diagnostic bands of the reporter. Upon introducing a restriction enzyme (e. g. MspI) into the ds-DNA-AuNP assembly solution, the removal of the interparticle hot-spot due to restriction enzyme cleavage of the ds-DNA leads to a decrease of the SERS signals. While the detailed cleavage process may depend on the reaction time and the amount of enzyme, the viability of using gold nanoparticle hot-spot based SERS monitoring of DNA assembly and enzyme cleavage is clearly demonstrated, which has important implications for developing new strategies for bioassays.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available