4.6 Article

Topology of acyltransferase motifs and substrate specificity and accessibility in 1-acyl-sn-glycero-3-phosphate acyltransferase 1

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.bbalip.2007.07.002

Keywords

lysophosphatidic acid; Acyl-CoA : 1-acyl-sn-glycero-3-phosphate acyltransferase; membrane topology; substrate specificity

Ask authors/readers for more resources

1-Acyl-sn-glycero-3-phosphate (AGP) acyltransferases (AGPAT) are involved in de novo biosynthesis of glycerolipids, such as phospholipids and triacylglycerol. Alignment of amino acid sequences from AGPAT, sn-glycerol-3-phosphate acyltransferase, and dihydroxyacetonephosphate acyltransferase reveals four regions with strong homology (acyltransferase motifs I-IV). The invariant amino acids within these regions may be part of a catalytically important site in this group of acyl-CoA acyltransferases. However, in human AGPAT1 a transmembrane domain is predicted to separate motif I on the cytosolic side from motifs II-III on the lumenal side, with motif IV near surface of the membrane. The topology of motifs I and III was confirmed by experiments with recombinant AGPAT1 containing potential glycosylation site near the motifs. This topology conflicts with the expectation that catalytically important sites are near one another, raising questions of whether the acyltransferase motifs really are important for AGPAT catalysis, and how substrates access motifs II-III on the lumenal side of the endoplasmic reticulum membrane. Using human AGPAT1 as a model, we have examined the catalytic roles of highly conserved residues in the four acyltransferase motifs by site-directed mutagenesis. Modifications of the sidechain structures of His 104, Asp 109, Phe146, Arg 149, Glu 178, Gly 179, Thrl 80, Arg 18 1 and Ile208 all affected AGPAT1 activity, indicating that the acyltransferase motifs indeed are important for AGPAT catalysis. In addition, we examined substrate accessibility to the catalytic domain of human AGPAT I using a competition assay. Lysophosphatidic acid (LPA) with fatty acid chains shorter than 10 carbons did not access the catalytic domain, suggesting that LPA hydrophobicity is important. In contrast, short chain acyl-CoAs did access the catalytic domain but did not serve as the second substrate. These results suggest that motifs 11 and 111 are involved in LPA binding and motifs I and IV are involved in acyl-CoA binding. (C) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available