4.7 Article

Deficient CD4+ CD25+ FOXP3+ T regulatory cells in acquired aplastic anemia

Journal

BLOOD
Volume 110, Issue 5, Pages 1603-1606

Publisher

AMER SOC HEMATOLOGY
DOI: 10.1182/blood-2007-01-066258

Keywords

-

Categories

Funding

  1. Intramural NIH HHS Funding Source: Medline

Ask authors/readers for more resources

Regulatory T cells are believed to control the development and progression of autoimmunity by suppressing autoreactive T cells. Decreased numbers of CD4(+)CD25(+) FOXP3(+) T cells (Tregs) are associated with impaired immune homeostasis and development of autoimmune diseases. The transcription factors FOXP3 and NFAT1 have key roles in regulatory T-cell development and function. We show that Tregs are decreased at presentation in almost all patients with aplastic anemia; FOXP3 protein and mRNA levels also are significantly lower in patients with aplastic anemia and NFAT1 protein levels are decreased or absent. Transfection of FOXP3-deficlent CD4(+)CD25(+) T cells from patients with a plasmid encoding wild-type NFAT1 resulted in increased FOXP3 expression in these cells. By NFAT1 knockdown in CD4(+)CD25(+) T cells, FOXP3 expression was decreased when NFAT1 expression was decreased. Our findings indicate that decreased NFAT1 could explain low FOXP3 expression and diminished Treg frequency in aplastic anemia. Treg defects are now implicated in autoimmune marrow failure.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available