4.3 Article

Short-limbed dwarfism:: slw is a new allele of Npr2 causing chondrodysplasia

Journal

JOURNAL OF HEREDITY
Volume 98, Issue 6, Pages 575-580

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1093/jhered/esm065

Keywords

-

Ask authors/readers for more resources

Short-limbed dwarfism (SLW) is a new mutant mouse characterized by a dwarf phenotype with markedly short body, limbs, and tail. In the present study, we investigated the skeletal phenotypes of the SLW mouse and determined the chromosomal localization to identify the gene responsible for the phenotypes (s/w). Skeletal preparations stained with alcian blue and alizarin red revealed that longitudinal growth of the extremities of the affected (s/w/s/w) mice was significantly reduced in comparison with that of normal mice, whereas the positions and numbers of skeletal elements were normal. Histological examination of tibial growth plates of the affected mice showed that the numbers of proliferating and hypertrophic chondrocytes were obviously diminished. These phenotypes resembled to those of human chondrodysplasias caused by defective chondrocyte proliferation and differentiation. We mapped the s/w locus on an 11.7-cM interval of the proximal region of mouse chromosome 4 by linkage analysis. Furthermore, allelism test using Npr2(cn) locus, a mutant allele of Npr2 gene encoding a natriuretic peptide receptor B, revealed that s/w locus is an allele of the Npr2 gene. These results suggest that the dwarf phenotype of the SLW mouse is caused by the disturbed endochondral ossification, and a mutation in the Npr2 gene is expected to be responsible for the phenotypes of the SLW mouse.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available