4.6 Article

Ferroelectric control of magnetism in BaTiO3/Fe heterostructures via interface strain coupling

Journal

PHYSICAL REVIEW B
Volume 76, Issue 9, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.76.092108

Keywords

-

Ask authors/readers for more resources

Reversible control of magnetism is reported for a Fe thin film in proximity of a BaTiO3 single crystal. Large magnetization changes emerge in response to ferroelectric switching and structural transitions of BaTiO3 controlled by applied electric fields and temperature, respectively. Interface strain coupling is the primary mechanism altering the induced magnetic anisotropy. As a result, coercivity changes up to 120% occur between the various structural states of BaTiO3. Up to 20% coercivity change is achieved via electrical control at room temperature. Our all solid state ferroelectric-ferromagnetic heterostructures open viable possibilities for technological applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available