4.5 Article

A quantum chemical study of the mechanism of action of Vitamin K epoxide reductase (VKOR) - II. Transition states

Journal

JOURNAL OF MOLECULAR GRAPHICS & MODELLING
Volume 26, Issue 2, Pages 401-408

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jmgm.2006.10.005

Keywords

Vitamin K; VKOR; reductase; mechanisms; transition states

Ask authors/readers for more resources

A reaction path including transition states is generated for the Silverman mechanism [R.B. Silverman, Chemical model studies for the mechanism of Vitamin K epoxide reductase, J. Am. Chem. Soc. 103 (1981) 5939-5941] of action for Vitamin K epoxide reductase (VKOR) using quantum mechanical methods (B3LYP/6-311G**). VKOR, an essential enzymein mammalian systems, acts to convert Vitamin Kepoxide, formed by Vitamin Kcarboxylase, to its (initial) quinone form for cellular reuse. This study elaborates on a prior work that focused on the thermodynamics of VKOR [D.W. Deerfield II, C.H. Davis, T. Wymore, D.W. Stafford, L.G. Pedersen, Int. J. Quant. Chem. 106 (2006) 2944-2952]. The geometries of proposed model intermediates and transition states in the mechanism are energy optimized. We find that once a key disulfide bond is broken, the reaction proceeds largely downhill. An important step in the conversion of the epoxide back to the quinone form involves initial protonation of the epoxide oxygen. We find that the source of this proton is likely a free mercapto group rather than a water molecule. The results are consistent with the current view that the widely used drug Warfarin likely acts by blocking binding of Vitamin K at the VKOR active site and thereby effectively blocking the initiating step. These results will be useful for designing more complete QM/MM studies of the enzymatic pathway once three-dimensional structural data is determined and available for VKOR. (c) 2006 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available