4.5 Article

Bacterial cellulose as a potential meniscus implant

Journal

Publisher

JOHN WILEY & SONS LTD
DOI: 10.1002/term.51

Keywords

bacterial cellulose; biomaterial; meniscus; biomechanics

Ask authors/readers for more resources

Traumatic or degenerative meniscal lesions are a frequent problem. The meniscus cannot regenerate after resection. These lesions often progress and lead to osteoarthritis. Collagen meniscal implants have been used in clinical practice to regenerate meniscal tissue after partial meniscectomy. The mechanical properties of bacterial cellulose (BC) gel were compared with a collagen material and the pig meniscus. BC was grown statically in corn steep liquid medium, as described elsewhere. Pig meniscus was harvested from pigs. The collagen implant was packed in sterile conditions until use. The different materials were evaluated under tensile and compression load, using an Instron 5542 with a 500 N load cell. The feasibility for implantation was explored using a pig model. The Young's modulus of bacterial cellulose was measured to be 1 MPa, 100 times less for the collagen material, 0.01 MPa in tensile load. The Young's modulus of bacterial cellulose and meniscus are similar in magnitude under a compression load of 2 kPa and with five times better mechanical properties than the collagen material. At higher compression strain, however, the pig meniscus is clearly stronger. These differences are clearly due to a more ordered and arranged structure of the collagen fibrils in the meniscus. The combination of the facts that BC is inexpensive, can be produced in a meniscus shape, and promotes cell migration makes it an attractive material for consideration as a meniscus implant. Copyright (c) 2007 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available