4.0 Article

Three-minute oscillations in sunspots: Seismology of sunspot atmospheres

Publisher

PLEIADES PUBLISHING INC
DOI: 10.1134/S106377370709006X

Keywords

sunspots; oscillations; MHD waves; seismology

Ask authors/readers for more resources

We show that no eigenmodes of sunspot oscillations with periods of similar to 3 min or shorter exist. A complex spectrum of the 3-min oscillations arises, because the sunspot atmosphere is a multiband filter for slow MHD waves. To ascertain why the filter transmission bands appear, we have investigated the propagation of waves through a sunspot atmosphere using both multilayered isothermal model atmospheres and various empirical model atmospheres. It turns out that there are several different mechanisms responsible for the appearance of transmission bands in the atmospheric filter for slow waves. The filter lowest-frequency transmission band arises from the effect of a Fabry-Perot interference filter at the resonance frequency of the temperature plateau. The frequency of this band is always lower than the cutoff frequency of the temperature minimum. The next (in frequency) transmission band appears at the cutoff frequency. The higher-frequency transmission bands result from the antireflection of the atmosphere, an effect well-known in optics and acoustics. The nonlinearity of the 3-min oscillations observed in the upper chromosphere and transition region has only an indirect effect on the properties of the filter, increasing its transmission in most bands due to a decrease in the amplitude of the wave reflected from the upper atmosphere caused by nonlinear wave absorption. Knowledge of the formation mechanisms for the 3-min oscillation spectrum has allowed us to suggest a technique for estimating the parameters of sunspot atmospheres from the 3-min oscillation spectrum, i.e., to lay the foundations for the seismology of sunspot atmospheres.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available