4.4 Article

A simple methodology for elaborating the life cycle inventory of agricultural products

Journal

INTERNATIONAL JOURNAL OF LIFE CYCLE ASSESSMENT
Volume 12, Issue 6, Pages 408-413

Publisher

SPRINGER HEIDELBERG
DOI: 10.1065/lca2006.09.272

Keywords

agricultural products; Brazil; fruit; grain; life cycle; inventory (LCI); methodology

Ask authors/readers for more resources

Goal, Scope and Background. A methodological approach for representing agricultural products in terms of life cycle inventory is suggested in this paper. This approach was developed during the conduction of an LCA study for two perennial crops of important Brazilian exportation products: green coffee and orange juice, which included tillage cultivation by commercial farms, harvest, as well as product processing when pertinent. The published papers on agricultural products LCA usually discuss the final results in terms of LCIA, being not very clear what methodology or principles were applied on the LCI phase. The aim of this paper is to present a simple methodology that would be employed by different stakeholders as farmers, environment managers and decision makers for evaluating the environmental performance of their products. In recent years, many researchers have tried to make a worldwide effort in order to reach comparable results of LCA studies developed in different countries. So, the proposed methodology has also the aim of isolating the site-dependency of the results that are not strictly related to the agricultural production. The time coverage suggested is the period can be considered as an average for the specific tillage under evaluation, usually two crops, since there is a large variation on the inputs in every other crop, including the higher and subsequent lower productive periods. Method. The functional unit recommended is 1,000 kg of the specific product, being recommended to distinguish the energy used for the cultivation from that used by the processing stage. There are several specific considerations to transform the data collected through the questionnaires in an inventory data set of fertilizers (macro and micro nutrients), correctives, fillers and pesticides further detailed. Water used for chemicals preparation, in the cleaning and processing stages of the harvested crop is also considered. Land use refers to the area used land for cultivation divided by the medium life period of the tillage. The stoichiometric balance is performed based on the elementary composition of the products. An average carbohydrate formula is established for the products considering the relationship among the carbon, hydrogen and oxygen contents of them. The carbohydrate formula (output) is balanced with carbon dioxide and water (inputs) according to the basic principles of the photosynthesis reaction. The differences among the mineral composition of the products and the total content of these elements (N, P, K, Ca, Mg and micronutrients elements) for all the crop inputs (fertilizers, pesticides, correctives) are allocated as outputs of the system. The pesticides is counted in two forms: grouped in classes (herbicide, fungicide, acaricide, bactericide and inseticide) and specified by the chemical name of the active ingredient. Results and Discussion. A simplified inventory useful for different purposes is generated with the principles described in this paper. The exact fate of each pesticide, fertilizer or corrective or assumptions can be further associated to impact categories as nutriphication, human health, natural resources depletion, ecological toxicity, etc. In this approach the mass balance was focused in the grain or fruit growth and not in the plant or tree as a whole, considering basically the elementary composition of the product and the photosynthesis principle. Despite agricultural LCAs performed in different countries have been published, neither of them considers the carbon capture by the agricultural products during their growth. Conclusions. This method is based on well accepted universal principles of stoichiometry applied to the grain or fruit growth. Minimum estimations were introduced in this approach, which produces 'clean inventories', with comparable results between different studies. The generated inventory can be gradually improved as the understanding about each emission fate is known, producing a valid methodology for actual and future knowledge about the fate of tillage emissions. The inventory results of this method can be employed by different stakeholders as farmers environment managers, decision makers and traders, with valuable environmental parameters for evaluating the environmental performance of their products and also for introducing improvements on their systems, without however to exhibit any particular data.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available