4.6 Review

Gold nanoparticle probes for the detection of mercury, lead and copper ions

Journal

ANALYST
Volume 136, Issue 5, Pages 863-871

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0an00652a

Keywords

-

Funding

  1. National Science Council of Taiwan [NSC 98-2113-M-002-011-MY3, NSC 99-2113-M-018-005-MY2]

Ask authors/readers for more resources

Monitoring the levels of potentially toxic metal (PTM) ions (e. g., Hg2+, Pb2+, Cu2+) in aquatic ecosystems is important because these ions can have severe effects on human health and the environment. Gold (Au) nanomaterials are attractive sensing materials because of their unique size- and shape-dependent optical properties. This review focuses on optical assays for Hg2+, Pb2+, and Cu2+ ions using functionalized Au nanomaterials. The syntheses of functionalized Au nanomaterials are discussed. We briefly review sensing approaches based on changes in absorbance resulting from metal ion-induced aggregation of Au nanoparticles (NPs) or direct deposition of metal ions onto Au NPs. The super-quenching properties of Au NPs allow them to be employed in 'turn on' and 'turn off' fluorescence approaches for the sensitive and selective detection of Hg2+, Pb2+, and Cu2+ ions. We highlight approaches based on fluorescence quenching through analyte-induced aggregation or the formation of metallophilic complexes of Au nanodots (NDs). We discuss the roles of several factors affecting the selectivity and sensitivity of the nanosensors toward the analytes: the size of the Au nanomaterial, the length and sequence of the DNA or the nature of the thiol, the surface density of the recognition ligand, and the ionic strength and pH of the buffer solution. In addition, we emphasize the potential of using new nanomaterials (e. g., fluorescent silver nanoclusters) for the detection of PTM ions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available