4.5 Article

A quantitative model of gastric smooth muscle cellular activation

Journal

ANNALS OF BIOMEDICAL ENGINEERING
Volume 35, Issue 9, Pages 1595-1607

Publisher

SPRINGER
DOI: 10.1007/s10439-007-9324-8

Keywords

gastric muscle; electrophysiology; computational model

Ask authors/readers for more resources

A physiologically realistic quantitative description of the electrical behavior of a gastric smooth muscle (SM) cell is presented. The model describes the response of a SM cell when activated by an electrical stimulus coming from the network of interstitial cells of Cajal (ICC) and is mediated by the activation of different ion channels species in the plasma membrane. The conductances (predominantly Ca2+ and K+) that are believed to substantially contribute to the membrane potential fluctuations during slow wave activity have been included in the model. A phenomenological description of intracellular Ca2+ dynamics has also been included because of its primary importance in regulating a number of cellular processes. In terms of shape, duration, and amplitude, the resulting simulated smooth muscle depolarizations (SMDs) are in good agreement with experimentally recordings from mammalian gastric SM in control and altered conditions. This model has also been designed to be suitable for incorporation into large scale multicellular simulations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available