4.5 Article

Photocatalytic degradation of dyes and organic contaminants in water using nanocrystalline anatase and rutile TiO2

Journal

SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS
Volume 8, Issue 6, Pages 455-462

Publisher

NATL INST MATERIALS SCIENCE
DOI: 10.1016/j.stam.2007.05.006

Keywords

nanocrystalline TiO2; anatase; rutile; band-gap; hydrothermal method; photocatalysis; dyes; organic compounds

Ask authors/readers for more resources

Nanocrystalline TiO2 was synthesized by controlled hydrolysis of titanium tetraisopropoxide. The anatase phase was converted to rutile phase by thermal treatment at 1023 K for 11 h. The catalysts were characterized by X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), Fourier-transform infrared absorption spectrophotometry (FT-IR) and N-2 adsorption (BET) at 77 K. This study compare the photocatalytic activity of the anatase and rutile phases of nanocrystalline TiO2 for the degradation of acetophenone, nitrobenzene, methylene blue and malachite green present in aqueous solutions. The initial rate of degradation was calculated to compare the photocatalytic activity of anatase and rutile nanocrystalline TiO2 for the degradation of different substances under ultraviolet light irradiation. The higher photocatalytic activity was obtained in anatase phase TiO2 for the degradation of all substances as compared with rutile phase. It is concluded that the higher photocatalytic activity in anatase TiO2 is due to parameters like band-gap, number of hydroxyl groups, surface area and porosity of the catalyst. (c) 2007 NIMS and Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available