4.8 Article

Retention mechanism in reversed-phase liquid chromatography: A molecular perspective

Journal

ANALYTICAL CHEMISTRY
Volume 79, Issue 17, Pages 6551-6558

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac0705115

Keywords

-

Ask authors/readers for more resources

A detailed, molecular-level understanding of the retention mechanism in reversed-phase liquid chromatography (RPLC) has eluded analytical chemists for decades. Through validated, particle-based Monte Carlo simulations of a model RPLC system consisting of dimethyloctadecylsilanes at a coverage of 2.9 mu mol/m(2) on an explicit silica substrate with unprotected residual silanols in contact with a water/methanol mobile phase, we show that the molecular-level retention processes for nonpolar and polar analytes, such as alkanes and alcohols, are much more complex than what has been previously deduced from thermodynamic and theoretical arguments. In contrast to some previous assumptions, the simulations indicate that both partitioning and adsorption play a key role in the separation process and that the stationary phase in RPLC behaves substantially different from a bulk hydrocarbon phase. The retention of nonpolar methylene segments is dominated by lipophilic interactions with the retentive phase, while solvophilic interactions are more important for the retention of the polar hydroxyl group.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available