4.6 Article

Label-free selective sensing of mercury(II) via reduced aggregation of the perylene fluorescent probe

Journal

ANALYST
Volume 135, Issue 8, Pages 1986-1991

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0an00174k

Keywords

-

Funding

  1. Chinese Academy of Sciences
  2. National Natural Science Foundation of China [20845006]

Ask authors/readers for more resources

In the present work, we report a fluorescence turn-on approach for the sensitive and selective detection of Hg(2+). A cationic perylene derivative (compound 1) was used as the fluorescence probe, and a thymine-rich oligonucleotide (oligo-M) was employed for the specific interaction with Hg(2+). Compound 1 shows strong tendency to self-aggregate into linear chain structures in aqueous media because of the pi-pi stacking interactions of its planar aromatic ring structure. The compound 1 free monomer is strongly fluorescent, whereas its aggregates are not fluorescent. When oligo-M and compound 1 were mixed, oligo-M induced strong compound 1 aggregation and resulted in significant fluorescence quenching. In the presence of Hg(2+), the specific interactions between oligo-M and Hg(2+) induced hairpin structure formation of oligo-M and thus weakened its binding to compound 1 aggregates. As a result, free probe monomers were released, and increased fluorescence was observed. The fluorescence intensity increase was in direct proportion to the concentration of Hg(2+) added. Our method provides a simple, fast, and efficient means for Hg(2+) quantification, it is highly sensitive with a limit of detection of 1 nM, and is also highly selective against other common metal ions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available