4.6 Article Proceedings Paper

A detailed analysis of how an urban trail system affects cyclists' travel

Journal

TRANSPORTATION
Volume 34, Issue 5, Pages 611-624

Publisher

SPRINGER
DOI: 10.1007/s11116-007-9130-z

Keywords

non-motorized transportation; cycling; infrastructure; distance decay; route choice; sustainability

Ask authors/readers for more resources

Transportation specialists, urban planners, and public health officials have been steadfast in encouraging active modes of transportation over the past decades. Conventional thinking, however, suggests that providing infrastructure for cycling and walking in the form of off-street trails is critically important. An outstanding question in the literature is how one's travel is affected by the use of such facilities and specifically, the role of distance to the trail in using such facilities. This research describes a highly detailed analysis of use along an off-street facility in Minneapolis, Minnesota, USA. The core questions addressed in this investigation aim to understand relationships between: (1) the propensity of using the trail based on distance from the trip origin and destination, and (2) how far out of their way trail users travel for the benefit of using the trail and explanatory factors for doing so. The data used in the analysis for this research was collected as a human intercept survey along a section of an off-street facility. The analysis demonstrates that a cogent distance decay pattern exists and that the decay function varies by trip purpose. Furthermore, we find that bicyclists travel, on average, 67% longer in order to include the trail facility on their route. The paper concludes by explaining how the distance decay and shortest path versus taken path analysis can aid in the planning and analysis of new trail systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available