4.5 Article

A mechanism of Munc18b-syntaxin 3-SANP25 complex assembly in regulated epithelial secretion

Journal

FEBS LETTERS
Volume 581, Issue 22, Pages 4318-4324

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.febslet.2007.07.083

Keywords

SNARE; syntaxin 3; Munc18b; CDK5; exocytosis

Funding

  1. NCI NIH HHS [R01 CA164133, P50 CA089019, U56 CA092080] Funding Source: Medline
  2. NIDDK NIH HHS [R01 DK056292, DK 56292, R01 DK115812] Funding Source: Medline

Ask authors/readers for more resources

Syntaxin and Munc18 are essential for regulated exocytosis in all eukaryotes. It was shown that Munc18 inhibition of neuronal syntaxin I can be overcome by CDK5 phosphorylation, indicating that structural change disrupts the syntaxin-Munc18 interaction. Here, we show that this phosphorylation promotes the assembly of Munc18b-syntaxin 3-SNAP25 tripartite complex and membrane fusion machinery SNARE. Using siRNAs to screen for genes required for regulated epithelial secretion, we identified the requirements of CDK5 and Munc18b in cAMP-dependent gastric acid secretion. Biochemical characterization revealed that Munc18b bears a syntaxin 3-selective binding site located at its most C-terminal 53 amino acids. Significantly, the phosphorylation of Thr572 by CDK5 attenuates Munc18b-syntaxin 3 interaction and promotes formation of Munc18b-syntaxin 3-SNAP25 tripartite complex, leading to an assembly of functional Munc18b-syntaxin 3-SNAP25VAMP2 membrane fusion machinery. Thus, our studies suggest a novel regulatory mechanism in which phosphorylation of Munc18b operates vesicle docking and fusion in regulated exocytosis. (c) 2007 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available